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Abstract. We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small
samples of the kagomé lattice of up to N = 36 sites. In agreement with the conclusions of previous authors,
we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the
ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic (∆S = 1)
excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic
(∆S = 0) excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will
presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates
of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which
could support long range chiral order. We do not know if these states will be true thermodynamic states or
only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on
the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard
chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional
quantum antiferromagnets.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics

1 Introduction

Zeng and Elser [1] were the first to point out that the spin
1/2 Heisenberg antiferromagnet on a kagomé lattice (here-
after called KHA) could be disordered. Since then many
studies have been devoted to this system. All quantum
approaches based on either exact diagonalizations [2,3],
on perturbational series expansions [4] or on high temper-
ature expansions [5] point to a disordered ground state.
Previous exact diagonalization studies [2,3] have shown
that spin-spin, spin nematic, spin Peierls and chiral-chiral
correlations decrease very rapidly with distance. Therefore
the idea that the KHA is a spin liquid is by now widely
accepted. The precise nature of the spin liquid state of
the KHA and of its low lying excitations is, however far
from clear. Some approaches point to a liquid of short
range dimers [6–8], others suggest that the KHA might be
a candidate for a chiral spin liquid state of the kind first
proposed for the triangular antiferromagnet by Kalmeyer
and Laughlin [9–11]. It seems to be the common view that
in both pictures any excitations, magnetic or nonmagnetic
ones, are separated from the ground state by a finite gap.
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While for the magnetic excitations this view is supported
by all previous numerical work on the KHA [1,3], the
situation is less clear for the nonmagnetic excitations. The
only piece of evidence for a finite albeit small gap sepa-
rating the singlet excitations of the KHA from its ground
state comes from the work of Zeng and Elser [8]. Elaborat-
ing on the idea of a short-range dimer liquid these authors
construct an effective low energy Hamiltonian for the sin-
glet subspace of the KHA, which as expected, exhibits a
small gap above its ground state. The question of whether
one of these pictures, that of a short range RVB spin liquid
or that of a chiral spin liquid, applies to the KHA has led
us to study not only the energies but also the symmetry
properties of a very large number of low lying levels of the
exact spectra of the KHA.

2 Numerical approach and some general
results

Using the Lanczos technique and a complete group the-
oretical analysis (as in Ref. [12]) we computed the low
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energy spectra of the Heisenberg Hamiltonian

H = J
∑
〈ij〉

2Si · Sj (1)

for small samples of the kagomé lattice on a 2-dimensional
torus with periodic and twisted boundary conditions (in
the following J = 1). We have obtained a very large
number of low lying levels in each irreducible represen-
tation (IR) of SU(2) and of the space groups of the
N = 9, 12, 15, 18, 21, 24, 27, 36 samples.

Table 1. Lowest energies per bond associated with the four
different k-points in the Brillouin zone of the N = 36 sample.

k E/N

(0, 0) −0.438377

( 2π
3
, 0) −0.437851

(0, 2π√
3
) −0.437585

( 4π
3 , 0) −0.438096

As in all spectra of Heisenberg antiferromagnets that
we have examined, the ground state energy of the S-
subspaces increases with the total spin S. However, the
spectra of the finite samples of the KHA do not show the
pattern that is characteristic for systems which exhibit
Néel type long range order in the thermodynamic limit
as, e.g. the triangular antiferromagnet (for a detailed dis-
cussion of the signature of long range order in the spectra
of finite samples see Ref. [13]). Instead, all the signatures
of a “liquid” are present in the low energy spectra of the
KHA:

i) The lowest levels associated with the different mo-
menta k in the Brillouin zones of the samples are al-
most independent of k. For instance, for the largest
sample (N = 36), the energies of these lowest levels
vary by less than 0.2% when k is varied through the
four inequivalent k-points of the Brillouin zone (see
Tab. 1). This absence of dispersion excludes the possi-
bility of a broken translational symmetry.

ii) The system is extremely soft against any twist of the
boundary conditions [14].

iii) The size dependence of the ground state energy is more
than one order of magnitude smaller than for the trian-
gular antiferromagnet in the same range 9 ≤ N ≤ 36.

3 Magnetic gap and nonmagnetic excitations

Our results, (Fig. 1), confirm the conclusion of Elser and
coworkers [1,3] about the existence of a gap for the mag-
netic ∆S = 1 excitations. The thermodynamic limit of
this gap cannot be extracted from the present data with
high accuracy. The extrapolations shown in Figure 1 point
to a lower bound of about J/20 (see also the discussion
in Ref. [14]). In any case, the value of the magnetic gap
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Fig. 1. (upper part) Energy per bond 〈2Si ·Sj〉 in the ground
states of Smin and Smin + 1. The energy per bond in the
thermodynamic limit is approximately 2〈Si · Sj〉 = −0.43.
(lower part) Spin gap versus 1/N for the even N and the odd
N samples.

appears to be at least one order of magnitude smaller than
the exchange energy J which is needed to break an iso-
lated singlet pair. This is a first indication that the picture
of the kagomé antiferromagnet as a spin liquid consisting
of short-range singlet dimer pairs may be inappropriate.
Nevertheless, it comes as a surprise that quite contrary to
the standard picture of a spin liquid the magnetic gap of
the KHA is filled with nonmagnetic excitations. This is
illustrated in Figure 2, where we display the integrated
density of states of the N = 36 sample. In this sam-
ple there are 183 singlet levels below the lowest triplet.
Similarly, in the N = 27 the ∆S = 1 gap is filled with
153 nonmagnetic excitations. For the samples we have ex-
amined, the number of nonmagnetic (∆S = 0) excitations
within the magnetic gap grows roughly as αN with the
system size, where α ' 1.15 and α ' 1.18 for the even
and odd samples, respectively. These results call for a few
comments:

i) The density of nonmagnetic levels above the ground
states of the two largest samples (N = 27, 36) strongly
suggests that in the thermodynamic limit the nonmagnetic
excitation spectrum of the KHA is a gapless continuum
adjacent to the ground state. Interestingly, an algebraic
decay of certain correlation functions would be compatible
with such a gapless nonmagnetic continuum. A candidate
is the dimer-dimer correlation function,

C〈i,j〉〈k,l〉 = 〈(Si · Sj)(Sk · Sl)〉 − 〈Si · Sj〉
2, (2)
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Fig. 2. Integrated density of states of the low lying levels of
the N = 36 sample plotted versus the energy per bond (heavy
line). The light and the broken line display the same quantity
for the S = 0 and S = 1 subspaces separately. The inset shows
a quadratic fit to the lowest 70 states of the spectrum.

which might decrease algebraically with the distance be-
tween the nearest neighbor bonds 〈i, j〉 and 〈k, l〉. Leung
and Elser [3] have calculated this function for the ground
state of the N = 36 sample of the KHA. Their result,
a damped oscillatory decrease of C〈i,j〉〈k,l〉, is not incon-
sistent with an algebraic decay. An algebraic decay of
the dimer-dimer correlations would imply that the system
is critical with respect to nonmagnetic quantum fluctua-
tions. Whether this is the case for the KHA or not will be
impossible to decide from finite size studies of the corre-
lation function alone.

ii) The exponentially large number of low lying sin-
glets of the spin 1/2 KHA is reminiscent of the ground
state degeneracy of the corresponding classical model. Sta-
bility considerations show that only planar spin configu-
rations qualify as true classical ground states [7,15–17].
Their number and hence the ground state degeneracy of
the classical KHA grows as 1.134N with the system size
N [18]. The different planar configurations are connected
with each other by local rotations in spin space [16]. In a
semiclassical picture these local rotations provide tunnel-
ing paths between the different planar configurations. It is
therefore tempting to think of the low lying singlets of the
quantum KHA as of tunnel-split classical ground states.
This semiclassical picture has been pursued by von Delft
and Henley [19]. As one of their main results these authors
find that for spin 1/2 all the tunneling events involving
the coherent rotation of the spins on simple loops on the
kagomé lattice yield zero tunneling amplitudes due to de-
structive interferences between different tunneling paths.
The smallest effective tunneling event requires the coher-
ent rotation of the spins on two nested hexagons on the
kagomé lattice involving 24 spins in total. Certainly, this
scenario cannot explain the abundance of low lying sin-

glets in a sample consisting of only 21, 27, or 36 spins. In
our view, this high density of low lying singlets in small
samples of the KHA is a strong argument against the va-
lidity of the semiclassical approach for the spin 1/2 KHA.

iii) Another comparison that suggests itself is between
the density of low lying singlets and the dimension of the
nearest neighbor valence-bond basis on the kagomé lat-
tice which grows as 2N/3 = 1.26N with the system size
[6]. From this point of view the variational approach of
Zeng and Elser [8] which builds on the valence bond ba-
sis seems fully justified. The main difference between the
approximate singlet spectrum of Zeng and Elser [8] and
our numerically exact result lies in the density of levels
at the bottom of this spectrum (see Fig. 2). The absence
of a gap above the ground state and the high density of
very low lying levels in the exact spectrum suggests that a
dimer product representation of the corresponding eigen-
states will necessarily contain long range singlet pairs. The
importance of such longer range singlets in the spin liquid
picture of the KHA might have been anticipated from the
work of Zeng and Elser who observed that the inclusion of
first and second-neighbor singlet pairs in their variational
Hilbert space led to a considerable improvement over the
results obtained in a pure first-neighbor dimer basis.

iv) The exponential number of non magnetic states in
the gap should be visible in various experimental situa-
tions: it may explain the vanishing of the neutron elastic
forward scattering cross section [20] and the very weak
field dependence of the low temperature heat capacity of
SrCrGaO observed by Ramirez et al. [21]. Specific heat
data and neutron scattering experiments both point to a
density of states that increases linearly with the energy. In
the very low energy region (E/N = −0.4384 · · · − 0.4364)
our numerical data are consistent with such a linear energy
dependence of the density of states (see the inset in Fig. 2,
where the integrated density of states is plotted); they are
definitely not consistent with an energy independent den-
sity of states as it would be obtained for an ordinary spin
glass [22].

4 Spin 1/2 excitations

4.1 Symmetries of the low lying S=1/2 eigenstates

The second surprise lies in the degeneracies of the low ly-
ing levels of the spectra of the samples with an odd num-
ber of spins (N = 9, 21, 27) and in the symmetries of the
eigenstates associated with them. We are focusing here on
the exponentially large number of spin doublets which fill
the gap between the ground state and the lowest S = 3/2
eigenstate. On account of the finite size scaling of the avail-
able spectra, we can ascertain that in the thermodynamic
limit all these eigenstates are complex and exhibit an at
least twofold degeneracy in addition to their magnetic de-
generacy. (In the following we shall consistently ignore the
trivial spin degeneracy.) Hence all these states may par-
ticipate in a spontaneous mechanism breaking the time
reversal (and parity) invariance of the Heisenberg Hamil-
tonian. In the spectra of the smallest samples, there are
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still some low lying levels which belong to 1D IRs of the
space group and are hence nondegenerate, but when the
size of the sample increases these levels are pushed to-
wards higher energies: in the N = 27 sample there are
153 S = 1/2 levels below the lowest S = 3/2 level, only
3 of them belong to 1D IRs of the space group. The finite
size extrapolation predicts that for odd sizes N > 50 no
states from the 1D IRs of the space group will be left in
the magnetic gap. This is indeed a very specific property
of the KHA which we have never observed in the spectrum
of any spin Hamiltonian on the triangular lattice: in the
usual triangular Néel antiferromagnet the homogeneous
low lying states belong to the trivial representation of the
C3 group, whereas in the present case the S = 1/2 levels of
the trivial representations are pushed high up in the spec-
tra.1 This observation leads us to concentrate on possible
new properties of this low lying S = 1/2 continuum.

4.2 Chiral observable and correlation function

All these low lying levels (except the 3 belonging to 1D
IRs) can sustain non-zero expectation values of the chiral-
ity operator

Ξ123 = 2 S1 · (S2 × S3) = Im(P123) (3)

where P123 is the cyclic permutation of three spins around
a triangular plaquette.

We have measured this quantity in the lowest lying
states of the N = 9, 21 and 27 samples for triangles with
side lengths 1,

√
3, 2,

√
7, 3 (see Tab. 2). Compared with

the eigenvalues ±
√

3/2 of the operator Ξ123 in the S =
1/2 bound states of three spins, the measured expectation
values are indeed quite small, and there is a sharp decrease
from the N = 9 to the N = 21 sample. But in view of
the data for N = 21 and N = 27 it is unclear how this
observable will behave for larger sizes. The chiral-chiral
correlation function (last lines of Tab. 2) is indeed short
ranged, which may explain the quasi-absence of size effects
between N = 21 and N = 27, and is indeed characteristic
of a liquid.

In order to have an indication of the possible order of
magnitude of the chirality in a pure chiral spin liquid, we
have computed the expectation value of Ξ123 for the spin
1/2 excitations of the Laughlin wave function [11] on the
same small lattices; these expectation values are denoted
(L.w-f) in Table 2. While for triangles of size 1 the L.w-f
values are an order of magnitude larger than the exact
results, they are of the same order of magnitude for larger
sizes. By this comparison we do not want to suggest that
the physics of the KHA is the same as that of the Laughlin
picture of a chiral spin liquid (as has been found in Sect. 4.

1 In the case of the q = 0 Néel order, enforced on the kagomé
lattice by a large enough second neighbor antiferromagnetic
coupling [23], the ground state of the odd samples does in fact
belong to the two complex conjugate IRs of C3 [23]. However
in this case it is the only low lying state with this symmetry,
all the others have much higher energies.

Table 2. Expectation values of the chiral operator for triangu-
lar loops of various sizes: d is the side-length of the triangle in
units of the nearest neighbor distance. These expectation val-
ues have been computed in the chiral ground states of the odd
samples (they are homogeneous k = (0, 0) states and belong
to the two degenerate complex conjugate IRs of C3). The lines
with the entry (L.w-f) in the left column contain the expecta-
tion values of the same operators in the variational Laughlin
wave-function of reference [11]. The last six lines contain the
correlations between the chiralities on elementary triangular
plaquettes for various distances.

〈Im(P123)〉

N 9 21 27

d = 1 0.2570 0.0353 0.0567

(L.w-f) 0.2780 0.4022 0.4033

d =
√

3 0.0613 0.0261 0.0241

(L.w-f) 0.1176 0.0105 0.0081

d = 2 0.0000 0.0094 0.0004

(L.w-f) 0.0000 0.0098 0.0071

d =
√

7 0.0013 0.0013

(L.w-f) 0.0035 0.0020

d = 3 0.0080

(L.w-f) 0.0015

d =
√

12 0.0000

〈Im(P123)Im(P456)〉 − 〈Im(P123)〉2

shell-shell distance N = 21 N = 27

0−0 0.7013 0.6990

0−1 −0.0012 0.0135

0−2 −0.0166 0.0131

0−3 −0.0017 0.0019

0−4 0.0072 −0.0000

0−5 −0.0029

above, the first excitations are different). We only want to
point out that the exact results may be significant in spite
of their numerically small values.

On the basis of results obtained by applying the SU(2)
Schwinger-boson approximation to samples of the KHA
with sizes of up to N = 72 sites Sachdev argues that the
chirality of the ground state goes to zero with increasing
system size [7]. It is indeed true that the exact ground
states of the even N samples have zero chirality for N =
12, 18, 24, 36. The present work indicates that this may
not be true for the odd N samples.

4.3 Chern index of the low lying S=1/2 levels

Searching for a quantity that might provide further evi-
dence for or against collective chiral behavior we followed
the proposal of Haldane and Arovas [24] and computed
the Chern number of the homogeneous (k = 0) ground
state of the N = 9 sample. It is a state which trans-
forms as R2π/3ψ = ei2π/3ψ under a spatial 2π/3 rotation.
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In this entire paragraph we shall concentrate on these spe-
cific states, which are the low lying homogeneous states
of the S = 1/2 continuum that we have been discussing
above. Anticipating further results we shall refer to these
eigenstates as “chiral” states henceforth. In the N = 27
sample, 36 of the 39 homogeneous states of this low lying
continuum are chiral states, and we expect that all states
of this continuum will be chiral in the thermodynamic
limit. The Chern number is a topological property of the
eigenfunctions of a system constrained by twisted bound-
ary conditions [24]. If T1 and T2 denote the two vectors
defining the sample cell, the twisted boundary conditions
are defined by

S±(Ri + Tj) = e±iΦjS±(Ri), (4)

where Φ1 and Φ2 are the two angles defining the rota-
tions of the spins around the z-direction. Let us denote
by |n(Φ1, Φ2)〉 the eigenstates obtained by adiabatic evo-
lution of the state |n〉 under the twists. The Chern index
of the ket |n〉 is defined by

C(n) =
i

2π

∫ 2π

0

dΦ1

∫ 2π

0

dΦ2 εab〈
∂n

∂Φa
|
∂n

∂Φb
〉. (5)

It is a topological constant that can take only integer val-
ues. It can only be non-zero for complex, degenerate eigen-
states, and, as will be discussed below, a non-zero value
of the Chern number of an eigenstate |n〉 implies peculiar
physical properties of the system in this state. A formula
equivalent to (4) is obtained by the use of Stokes’ theorem:

C(n) = 2πi

∮
〈n|dn〉. (6)

It shows that the Chern number counts the number and
the nature of the singularities of the phase of |n(Φ1, Φ2)〉
in the (Φ1, Φ2) Brillouin zone. It is a measure of the
vorticity of this phase. For computational purposes the
expression (4) is quite cumbersome. A more convenient
expression is obtained by changing to a spatially vary-
ing reference frame for the spin variables such that the
twisted boundary conditions (3) are replaced by periodic
ones. The main steps in this procedure are as follows: let
S0 be the reference frame for the spin at the origin R0

of the sample. Then the reference frame at the site Ri is
obtained from S0 by a rotation through the angle

Θ(Ri) = (Ri −R0)(e1θ1 + e2θ2), (7)

around the z-direction, where e1, e2 span the Bravais lat-
tice and θ1, θ2 are the increments of the rotation angle
along e1 and e2. θ1, θ2 are chosen such that they add up
to the twist angles, i.e.:

Φa = Θ(R0 + Ta), a = 1, 2. (8)

In this spatially varying reference frame the Hamiltonian
reads

H̃(θ1, θ2) = 2
∑
〈i,j〉

{Szi S
z
j + 1/2

(
eiχijS+

i S
−
j + h.c.

)
}, (9)

where

χij = Θ(Ri)−Θ(Rj). (10)

The Chern number in the eigenlevel |n〉 associated with

the eigenvalue Ẽn of H̃ is then readily obtained as the
average over the (Φ1, Φ2) Brillouin zone of the function:

Kab = 2πεab
∑
p6=n

〈n| ∂H̃∂Φa |p〉〈p|
∂H̃
∂Φb
|n〉

(Ẽn − Ẽp)2
, (11)

where

∂H̃

∂Φa
= i
∑
i,j

(
eiχijS+

i S
−
j − h.c.

) ∂χij
∂Φa

· (12)

The phase angle χij depends linearly on Φa through the

local twists (7), and
∂χij
∂Φa

is a linear combination of the

space components of (Ri −Rj).
The computation of the Chern number is a heavy task.

After a thorough study of the chiral ground state of the
N = 9 sample we can ascertain that for this state the
Chern number is +1 (respectively −1 for the complex con-
jugate eigenstate). In view of our study of the singular

points of Ẽn(Φ1, Φ2) in the chiral states of the N = 21
and 27 samples, we expect it to be odd for any of the
low lying doublets and most probably equal to ±1 for the
ground state (in this last case, we find only one conical
point at (Φ1, Φ2) = (0, 0)).

The physical significance of the Chern index may be
inferred from the expression (11) which is a zero frequency
Kubo response function. The general formula for the re-
sponse of an observable B to an excitation of the observ-
able A reads at T = 0:

χT=0
BA (ω = 0) = 2~ Im

∑
p6=n

〈n|B|p〉〈p|Ȧ|n〉

(Ẽn − Ẽp)2
, (13)

where Ȧ is the time derivative of the observable coupled to
the external field. Comparing this general form of the re-
sponse function with the special form (11), one sees that in

(11) both operators Ȧ and B are linearly connected with
the total spin currents Ja = i

∑
〈i,j〉

(
eχijS+

i S
−
j − h.c.

)
,

where the
∑
〈i,j〉 is to be restricted for a = 1, 2 to the

bonds along the directions e1 and e2. The external field
that drives a spin current along, e.g. the e1-direction, is a
magnetic field with a constant gradient in this same direc-
tion. This is most easily seen on the example of the square
lattice, where the relation between (θ1, θ2) and (Φ1, Φ2)
is diagonal. The case of the kagomé lattice is technically
slightly more involved, but the physics is the same. The
perturbation of the Hamiltonian H̃ induced by a mag-
netic field Bz with a constant gradient in the e1-direction
is given by

V = −
∑
i

α1Xi1S
z
i , (14)
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where Xi1 = (Ri · e1). Here, α1 is the linear increment of
the magnetic field over one lattice constant. (Here and in
the sequel we set ~, the Bohr magneton and the gyromag-
netic factor equal to unity.) Identifying the observable A
as A =

∑
(Ri · e1)Szi one sees immediately that its time

derivative is the total spin current in the e1-direction:

Ȧ = −i [A,H] =
∑
〈i,j〉

Im{eiχijS+
i S
−
j }(Xi1 −Xj1) = J1.

(15)

In the orthogonal geometry one has the simple relation
Ja = ∂H

∂Φa
, a = 1, 2, and the expression (11) takes the

form of a transverse current-current correlation function:

Kab = 2 Im
∑
p6=n

〈n|Ja|p〉〈p|Jb|n〉

(Ẽn − Ẽp)2
· (16)

This correlation function measures the transverse current
J2 generated in the e2-direction by a gradient of the mag-
netic field Bz along the e1-direction. Hence we arrive at
the linear relation

〈J2〉 = 2πKab
∂Bz

∂X1
· (17)

At this point it is important to note that the above deriva-
tion of (17) is purely formal. It is a linear expansion with
respect to the perturbation V , (14), which, as it is obvious
from (14), becomes arbitrarily large in the thermodynamic
limit. Thus, (17) cannot be considered a physically mean-
ingful relation between the spin current and the gradient
of the inhomogeneous magnetic field. However, by employ-
ing a gauge argument Haldane and Arovas [24] show that
a physically sound relation is obtained from (17), if the re-
sponse function K is replaced by its average over the torus
0 < Φ1, Φ2 < 2π of the twist angles, i.e. by the Chern
number C(0).

From the mathematical point of view the Chern num-
ber of this spin system is equivalent to the TKNN index of
the Quantum Hall Effect (QHE) [25], and as in the QHE
the spin 1/2 excitations are separated from the S = 0
ground state by a finite gap (see ∆S=1/2 in Fig. 3). But
there are very definite and crucial differences: i) In our
spin system, contrary to the QHE, the parity and time
reversal invariance are not externally broken. Eigenstates
with positive and negative Chern number are degenerate.
ii) In each spin sector there is a continuum of excitations
adjacent to the ground state and there may be couplings
between the two sectors under the effect of an external
magnetic field. So it is difficult to imagine how the micro-
scopic rigidity associated with the Chern number could
become manifest on a macroscopic level. iii) Finally our
numerical results seem to indicate that the creation of two
spin 1/2 excitations is less favorable than the creation of
a spin 1 excitation: 2E∆S=1/2 > E∆S=1 (see Fig. 3), but
because of the uncertainties in the extrapolation proce-
dure, this last result is not entirely reliable. The question
of whether the excitation of two spin 1/2 entities is ener-
getically more or less favorable than the creation of one
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Fig. 3. E∆S=1/2: energy for creating one S = 1/2 excitation.
This energy is the difference between the interpolated ground
state energies for S = 1/2 and S = 0 (see Fig. 1). E∆S=1:
energy for creating one S = 1 excitation in the even samples
(magnetic gap). The graphs shown in this figure are based on
polynomial interpolations between the numerical data. Con-
tinuations of these graphs to larger values of N (N > 27 for
E∆S=1/2 and N > 36 for E∆S=1) are unwarranted.

S = 1 excitation is indeed an major open point. In the
first case the spin 1/2 excitations would be true thermo-
dynamic excitations, in the opposite case they could only
appear as metastable excitations in sophisticated dynamic
experiments. Whatever the answer to this last question
may be, the KHA is certainly not a system which fits eas-
ily into the frame of standard continuum chiral theories.
In any case the symmetries of these spin 1/2 excitations
are features that will survive in the thermodynamic limit
although the states may be metastable in this limit. We
may hypothesize that their non-zero Chern number, since
it is a quantum number, will also survive in the thermody-
namic limit. In this picture the chiral S = 1/2 states of the
KHA can certainly not be viewed as simple bound states
of three spins 1/2 in a sea of singlets: a cluster of three
spins in its S = 1/2 ground state has indeed a nonzero
expectation value of the chirality Ξ123 = ±

√
3/2, but its

Chern index is zero. The Chern number is a measure of
a topological rigidity of the N-particle states, which is by
itself unique. To our knowledge the KHA is the first sys-
tem with a Hamiltonian that does not break parity and
time reversal invariance, where a non-zero Chern number
has been observed.

5 Conclusion

In conclusion, our numerical study of the low lying spectra
of the spin 1/2 KHA leads us to assert that this system is
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a strange spin liquid: its lowest excitations are soft non-
magnetic excitations whose existence in a spin system has
not been anticipated in previous theoretical investigations
of antiferromagnets. The absence of a gap between these
excitations and the ground state may signal that the KHA
is, at T = 0, in a critical state with arbitrarily long-ranged
singlet-singlet correlations. In any case, the existence of
this continuum of low energy nonmagnetic modes in the
KHA already contradicts the conception of the ground
state of this system as a short-range RVB state. It also
contradicts the classical and semi- classical pictures of the
KHA which are all more or less based on the idea of pre-
ferred planar spin arrangements, which imply a breaking
of the SU(2) symmetry. As has been shown in previous
work [12,13], the spectra of finite samples of a spin sys-
tem have to exhibit a certain signature, if a breaking of the
SU(2) symmetry is to occur in the thermodynamic limit.
The spectra of the finite samples of the KHA do not show
this signature [14], and thus a planar arrangement of the
spins of the KHA can be ruled out.

In the sea of long-range correlated singlets an unpaired
spin 1/2 is surrounded by transverse spin currents, which
are another signature of long range correlations. The non
zero Chern number of the S = 1/2 states of the KHA is a
proof of some kind of microscopic rigidity (sensitivity to
the boundary conditions), which is usually found in chi-
ral theories in the literature. However, in standard chiral
theories these spin 1/2 excitations are indeed the lowest
excitations of the system, which is definitely not the case
for the KHA. We do not know if these spin 1/2 excitations
will be true thermodynamic excitations or only metastable
ones, but they might show up in dynamical experiments
(transverse spin diffusion, spin echoes).

To conclude we want to emphasize that there is some
evidence that this kind of ground state and low lying exci-
tations (critical singlets and gapped magnetic excitations)
are robust properties of the KHA: finite perturbations
(second neighbor interactions) are needed to drive the
KHA into Néel ordered states [14,23], and the XY model
on the kagomé lattice has a spectrum that is similar to
the spectrum of the Heisenberg model. Thus, the above
properties of the KHA with nearest neighbor interactions
may be facets of a new state of frustrated quantum anti-
ferromagnets which is generically different from the Néel
ordered state on the one hand and from the short-range
RVB state on the other [26–31]. The low energy physics of
the KHA may be embodied in real compounds: in spite of
the fact that SrCrGaO is a spin 3/2 compound with many
complexities (dilute triangular planes of spins intercalated
between the kagomé planes, role of the defects), some of
its unusual properties (low temperature specific heat, dy-
namical spin correlations) may be explicable on the basis
of the present results.
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